

Autonomy

Guy Man, JPL Gregg Swietek, ARC

New Millennium Workshop

Autonomy IPDT

May 14 - 16, 1996

San Antonio, TX

G. K. Man & Gregg Swietek

Agenda

- Membership
- Focus & Scope
- Roadmap
- Key Technologies for Flight Validations
- Roadmap Gaps

1995 Membership

Co-Leaders:

G. Man JPL ARC

Members:

C. Anderson AFPL

E. Curtis OCA Applied Optics

L. Fesq TRW Space & Electronics

J. How Stanford University

R. Connerton GSFC

R. Simmons Carnegie Mellon University

R. Twiggs Stanford University

M. Yellin Hughes Danbury Optical Systems

R. van Bezooijen Lockheed-Martin

Cooperating Partners:

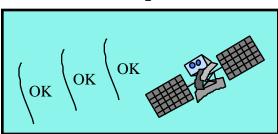
B. Bullock ISX Corporation J. Wertz Microcosm, Inc.

Autonomy Vision for Exploration

5 yrs 10 yrs 15 yrs

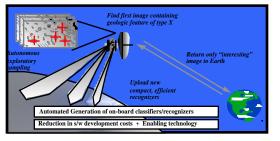
Enables affordable new exploration Cooperating Fleet

| Coordinated Platforms | Cooperating Fleet | Coope

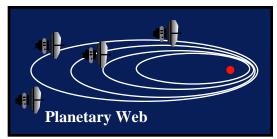

Self-Managing Explorer

Capability

- Handles more uncertainties
- Requires fewer operations staff


• Enables new science

Highly Autonomous Spacecraft


- Self-directing spacecraft
- Self-protecting spacecraft
- Self-mobilizing spacecraft
- Beacon operations

Observing & Discovery Presence Onboard

- Trainable object recognition
- Knowledge discovery
- Close maneuvering at target

Widespread Projection of Human Awareness

- Multiple interacting heterogeneous spacecraft
- Fleet coordination
- Science alerts

 May 1996

 New Millennium Autonomy

Autonomy - The Affordable Way to Revolutionize Exploration

Scope

Remote Agent

- Unified Flight & Ground System Software Architecture Open Architecture: flexible, modular, "plug & play" design.
- Goal-Directed Planning, Resource Management, & Control Autonomous mission and activities planning and scheduling; conditional sequencing
- Anomaly Detection & Fault Recovery

Automated fault detection, isolation, & recovery; known & unknown fault conditions; functional redundancy

Autonomous Guidance, Navigation & Control

• Navigation & Control

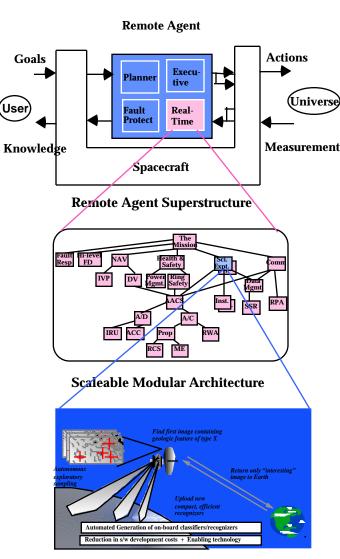
Onboard optical navigation, orbit determination & trajectory planning; autonomous station keeping; target relative maneuvering & feature tracking. Small body rendezvous & sample return.

Sensors

Small versatile optical sensor, GPS-on-a-chip, autonomous formation flying sensor.

Science & Mission Operations

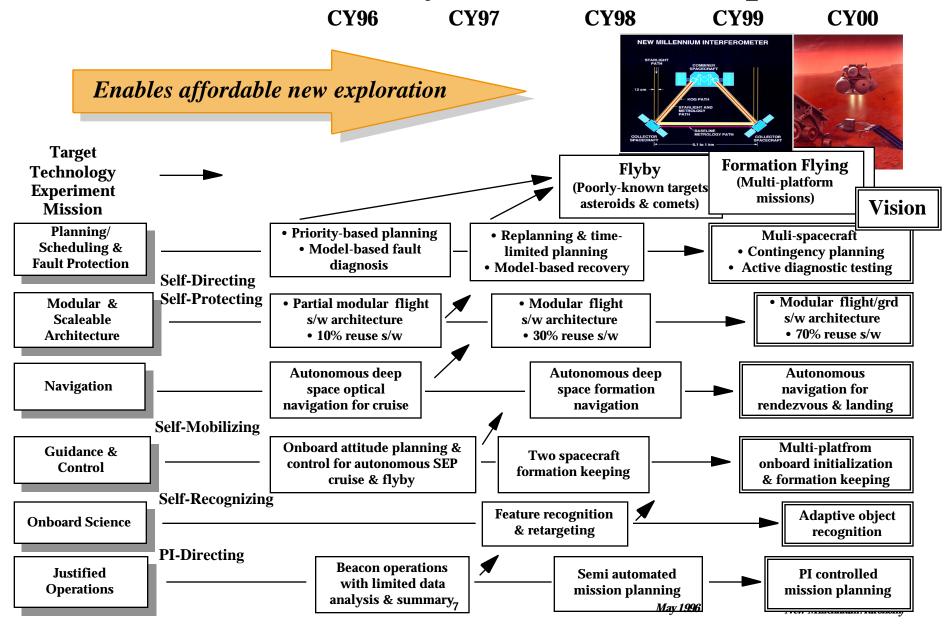
Onboard Science Data Processing


Adaptive feature recognition capabilities; "tunable" filters/recognizers; interactive & opportunistic science.

• "Justified/Beacon" Operations

PI-directed operations; goal-directed commanding; small beacon mode infrastructure team; automated data/info dissemination.

Formation Flying


Formation keeping for multi-platform correlated observations; cluster initiation and reconfiguration; cross-platform distributed FDIR; S/C network management.

Science Data Processing

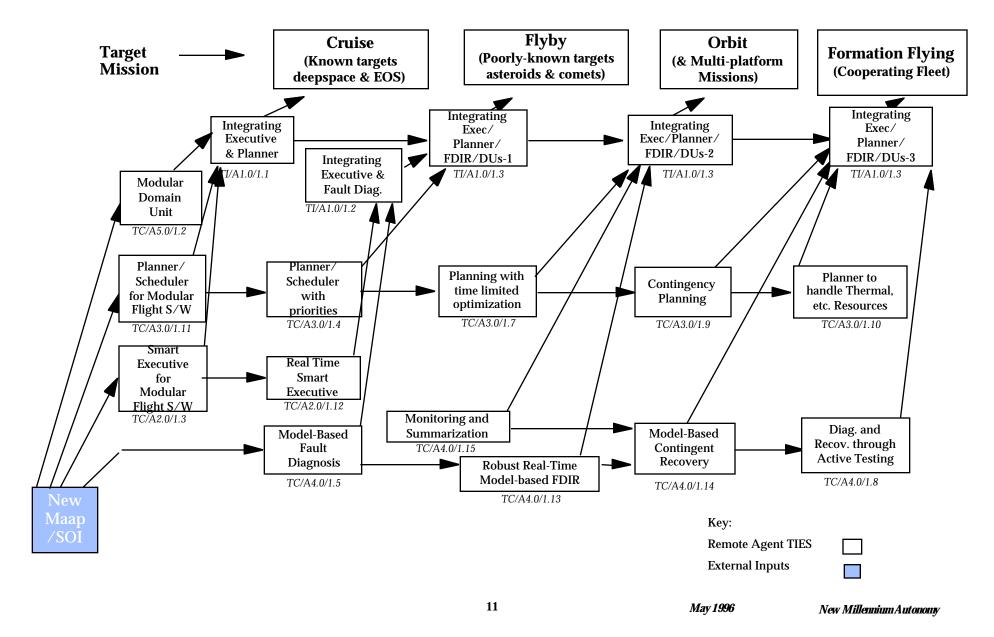
Autonomy 5-Year Roadmap

Autonomy Technology Development Through IFD's

CY96 CY97 CY98 CY00 CY99 Cooperating Fleet Enables affordable new exploration Coordinated Platforms Self-Managing Explorer Phased Integrated Feasibility Demos (IFDs) Remote Agent - Autonomy Architecture & Functionality Executive •Planning & Scheduling • Fault Protection **Autonomous GN&C** Navigation Control Sensors **Science & Mission Operations** • Engineering & Science Data **Processing** • Beacon/Justified Ops • "Virtual" Connection w/Scientists **Formation Flying** Synchronization & time tagging • Distributed Architecture Control within a cluster Control of whole cluster May 1996 New Millennium Autonomy

Remote Agent Technology Roadmap

Technology	Current Capability	CY1997	CY2000	Vision
Architecture	Flat system; Clear separation between ground ops and spacecraft functions; No software reuse	Hierarchical command structure; Standardized interfaces; 20% software reuse (TC/A-DU/Mod, TC/I-Sys/EDP1)	Transfer of functionality from ground ops to spacecraft; Reusable modules; 50% software reuse (TC/I-Sys/EDP2, TC/I-Sys/EDP3)	Multi-level information flow; Library of reusable components (mix & match); Run-time code migration
Executive	Linear sequences; Tightly scheduled; Inflexible Custom-built	Conditional sequences; Reactive to contingencies; Multi-tasking; (TC/A-Exec/Mod, TC/A-Exec/RealTime, TC/I-Sys/E&D)	Handle novel situations and unexpected contingencies; Detect resource conflicts (TC/A-P&S/Conting)	Integrate goal- and event- driven behaviors; Anticipate contingencies; Real-time scheduling and load- balancing
Tools	Manual design; Some (non-integrated) tool support	Code generation for interfaces between modules; Test generation and advanced simulation capabilities (TC/S-Anlz/TestGen)	Tools for design and verification of conditional sequences & FDIR (TC/S-Design/FDIR, TC/S-Anlz/Plan, TC/ S-Design/DU, TC/S-Anlz/Res)	Automated synthesis of s/c systems from high-level specs and requirements
Planning/ Scheduling	PreLaunch: Humans - Contingency Mission: S/C- Execution, Humans - Replanning	PreLaunch: Automated - Sequential Mission: Automated nominal priority-based plans and some replanning (TC/A P&S/Pri)	PreLaunch: Automated - Conting. Mission: Replanning, Conditional planning, Contingency planning (TC/A-P&S/Time, TC/A P&S/Conting)	PreLaunch: Goal Definition Mission: S/C takes full charge of all resources
FDIR (Fault Detection, Isolation, and Recovery)	Rule-based on-board algorithms; time and persistence sensitive Recovery of capability managed primarily on ground by humans.	Modular, model-based FDIR onboard. Limited response to unanticipated, multiple faults. Some modular responses handcoded. (TC/A-FDIR/Mod, TI/A-Sys/E&D, TI/A-Sys/EDP1)	Active diagnostic testing and flexible contingent response; model-based configuration management; some statistical methods for FD. (TC/A-FDIR/Conting, TC/A-FDIR/Active, TC/S-Design/FDIR, TI/A-Sys/EDP2&3)	High-level, model-based programming of hybrid discrete-continuous reactive system. Behavior distributed across constellation.



Remote Agent: Benefits to Space Community

	CY97	CY00
Scientist/Users	Interact at high level of abstraction; Reduced down time demonstrates potential for increased science return.	More Reliable goal achievement. Minimal down time and low cost enable new paradigm for exploration
Mission Operators	Reduced operation staff Flexible ground-s/c interaction Reduced monitoring requirements	More reliable systems; Less dependence on ground intervention Auto recovery and active diagnosis enables Tiger team to manage spacecraft fleet.
S/C Developers	Reusable architecture. High level specification language Model-based programming enables quick FDIR prototyping.	Easy to express design decisions Model-reuse and programming enable fast assembly of reliable spacecraft.
Technologists	New insights into building autonomous systems and key research issues.	New paradigm for research, on autonomous hybrid systems.
Commercial Sector	Transfer technology to other real- time autonomous systems such as robotics and process control New methodology for building commercial S/C initiated.	Benefits to computer-aided software engineering Model-based programming broadly applied to build, robust autonomous systems.

Remote Agent Build-up Plan

Remote Agent TC/A-FDIR/Rob (Component) TC/A4.0/1.13

Title: Robust Model-Based Isolation and Recovery in Real-time

Technical Focus:

To have broad coverage, recovery must be able to flexibly construct sequences of recovery actions and fault isolation must be able to identify failures that manifest themselves over a period of time. To be responsive, both capabilities will provide any-time algorithms that are guaranteed to provide a safe solution at any point in time, with the quality of solution improving over time.

Demonstration:

Using a spacecraft simulator, Isolation correctly identifies failure modes whose symptoms manifest themselves over a period of time. Recovery correctly responds to failures involving the interleaving of sequences of actions, and responds to failures where the source and cause is ambiguous. Isolation and recovery actions requested after successive times lead to improved quality.

Evaluation Metrics:

Response time

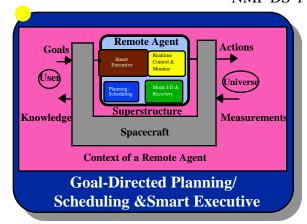
Percentage of correct responses by fault class

Percentage of time that the system enters safing mode.

Assumptions:

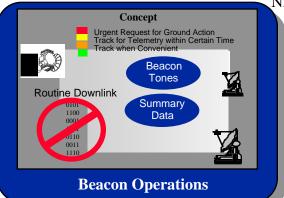
Spacecraft models, MMI Outputs: TI/A-Sys/EDP2 (TI/A1.0/1.3)

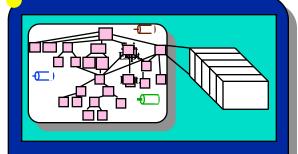
Who: AMES/JPL/TRW When: FY97 Cost: \$450K


Inputs: NONE

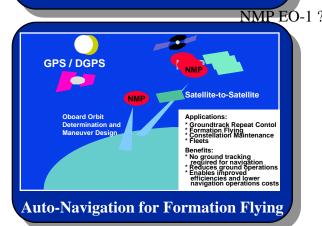
Autonomy Technology Flight Experiments

Self-Directing Self-Protecting

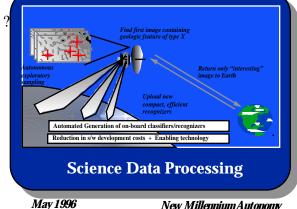

NMP DS-1



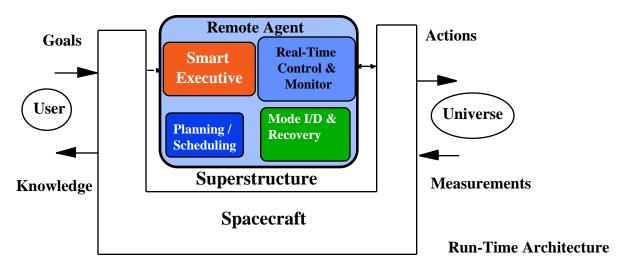
Self-Mobilizing


NMP DS-1

Flight & Ground Systems Architecture


NMP DS-1

NMP DS-1


NMP DS-1?

New Millennium Autonomy

Autonomy Remote Agent - Run-Time Architecture

Planning & Scheduling

Context of a Remote Agent

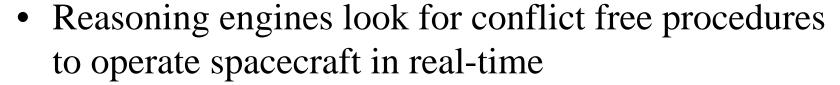
Constraint-based planning & scheduling, to ensure achievement of long-term mission objectives and manage allocation of system resources (e.g. time, orders, power, fuel)

Smart Executive

Robust, multithreaded execution, to reliably execute planned sequences under conditions of uncertainty, to rapidly respond to unexpected events such as component failures, and to manage concurrent real-time activities

Mode Identification & Recovery

Model-based diagnosis, to confirm successful plan execution and to infer the health of all system components based on inherently limited sensor information


Remote Agent Key Idea: Design Operational Behavior into the Spacecraft Before Launch

Spacecraft carries explicit models of the operational

behaviors, e.g.,

- Resource constraints: power, pointing direction,
 science/nav camera
- Hardware constraints: warm-up times, batteryGoals charging cycles, task precedence relations

 Initial
- Nominal & Failure modes: all hardware state
 (e.g., bus, computer, telecon system), system modes

Benefits: Reduces operations requirements & endows spacecraft with multiple means to function.

Engine

Search

engine

Schedule

temporal database

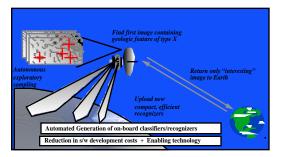
Knowledge

Heuristics

Models

Plan

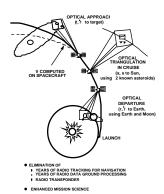
Database



Key Idea: Transform the Spacecraft from an Open Loop System to a Closed-Loop System

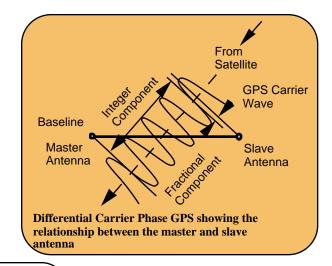
- At the level of servo systems, current spacecraft provide feedback-based control loops, e.g. attitude control.
- However, at the level of **goals** (commands to the spacecraft), current spacecraft is open-loop; the feedback loop for goals is a labor-intensive and slow ground-based process.
- Model-based autonomy system closes the loop on-board at the goal level.

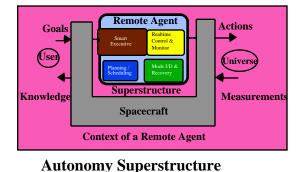
Benefits: Allow us to go into environment that is more uncertain & to achieve our goal more reliably in the face of problems.



Science Data Processing

- South West Research
- NASA

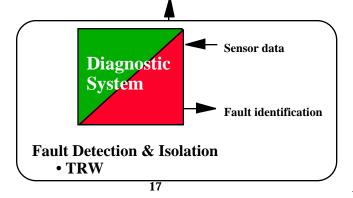

Teaming



Optical Navigation

• NASA

• NASA


Precision GPS

• Stanford University

Planning, Scheduling, Reasoning Error Recovery Servoing Real-Time Control

High Level Design Tool & Language
• Carnegie Mellon University

Science & Mission Operations & Processes - Beacon mode

- ISX
- Stanford University

May 1996

New Millennium Autonomy

Look Ahead - Technology Gaps

- Rendezvous & Landing
- Formation Flying & Multiple Spacecraft Systems
- Payload Data Processing
- Testing